
Message Authentication on 64-bit Architectures

Ted Krovetz

Department of Computer Science
California State University, Sacramento CA 95819 USA

Abstract. This paper introduces VMAC, a message authentication al-
gorithm (MAC) optimized for high performance in software on 64-bit
architectures. On the Athlon 64 processor, VMAC authenticates 2KB
cache-resident messages at a cost of about 0.5 CPU cycles per message
byte (cpb) — significantly faster than other recent MAC schemes such
as UMAC (1.0 cpb) and Poly1305 (3.1 cpb). VMAC is a MAC in the
Wegman-Carter style, employing a “universal” hash function VHASH,
which is fully developed in this paper. VHASH employs a three-stage
hashing strategy, and each stage is developed with the goal of optimal
performance in 64-bit environments.

Keywords: Message authentication, universal hashing, architectural optimization.

I personally believe there are two main architectures out
there: Power and x86-64 [both of which are 64-bit architectures].

— Linus Torvalds, 2005.

1 Introduction

Over the years, as design and manufacturing techniques have improved, and
demand for memory addressability has increased, register lengths have become
longer. The recent adoption of 64-bit register architectures for mainstream pro-
cessors from IBM, Intel and Advanced Micro Devices is a natural evolution in
this process. It is reasonable to believe that, just as 32-bit processors did before
them, 64-bit processors will become dominant not only in servers but also in
desktops and laptops.

Many algorithms, especially in domains where high performance is desirable,
are designed with optimizations tailored for particular architectures. Changing
architectures while keeping the same designs can easily lead to suboptimal per-
formance. This is the case with high-speed message authentication and the move
from 32-bit to 64-bit architectures. The fastest reported software-optimized mes-
sage authentication algorithms (or MACs) are all designed to run well on 32-bit
architectures [5, 6, 9]. While these MACs generally work equally well on both
32- and 64-bit architectures — because the newer architectures support older
instructions at full speed — they are not designed to take advantage of new
capabilities found in 64-bit processors. As an example consider UMAC, which

 0.5

 1

 2

 4

 8

 16

 32

 64
 32 64 128 256 512 1024 2048

S
pe

ed
 (

cy
cl

es
/b

yt
e)

Message Length (bytes)

VMAC
UMAC-64

VMAC-128
UMAC-128

Poly1305
HMAC-SHA1

Fig. 1. Efficiency on the Athlon 64 processor of the hash functions underlying recent
MACs, measured in CPU cycles per byte of message hashed. VMAC and UMAC-64
produce 64-bits while the others produce 128 (or 160 for SHA-1).

was designed specifically for optimal performance on 32-bit architectures [5]. On
an Athlon 64 processor, UMAC achieves peak speeds of about 1.1 CPU cycles
per byte of message authenticated (cpb) when it is restricted to using 32-bit
operands, but improves only slightly to 1.0 cpb when allowed full use of 64-bit
operands.

This paper presents VMAC, the fastest reported MAC on contemporary 64-
bit processors, achieving peak speeds of 0.5 cpb on the Athlon 64 (and as low as
0.3 cpb if one allows larger internal keys, see Figure 4). This compares favorably
with other MACs. Figure 1 shows the performance of the internal hash functions
of recent high-speed MAC’s.1 (Hash speeds determine a MAC’s relative speed
because all modern MACs hash their messages first.) Although the main goal of
the VMAC design effort is high speed on 64-bit processors, VMAC is careful to
avoid some of the perceived deficiencies of recent high-speed MACs, particularly
by limiting use of internal hash key (VMAC uses 160 bytes) and avoidance
of data-dependant side-channel attacks. VMAC has the desirable properties of
being provably secure, parallelizable, and patent-free.

1 Timings in this paper are generated using gcc 4.0 with optimization level -O4 (or
-fast if available) and appropriate -march or -mcpu settings. The bulk of perfor-
mance claims are based on an AMD Athlon 64 “Manchester” (family 15, model
43, stepping 1, L2 cache 512K). Other architectures are reported in Section 3.6. All
data 16-byte aligned and in cache. UMAC and Poly1305 timings are made from code
obtained at their author’s websites. SHA timings are as reported by OpenSSL.

Message Authentication. Message authentication is used when parties wish
to communicate with assurance that received messages come from the claimed
sender without alteration. All of the fastest MACs follow principles developed by
Wegman and Carter [3, 5–7, 9, 14]. The basic Wegman-Carter message authenti-
cation paradigm is for the sender first to hash the message with a hash function
known only to himself and the receiver. The sender then applies some crypto-
graphic function (usually encryption) to the resulting hash value, which produces
a message tag that is sent along with the message to the receiver. The receiver
can then repeat the process, verifying that the received tag is valid for the re-
ceived message. In a correctly designed MAC, only those knowing the secret hash
function and cryptographic keys have a reasonable chance of creating a valid tag
for any new message. If, however, an adversary is able to produce a valid tag for
a new message without knowing the hash function and cryptographic keys, then
a forgery has occurred. Due to their ephemeral nature, communication sessions
usually need only be secure against forgery during the lifetime of the session.
If an adversary cannot forge with a probability of more than about 1/260 per
attempt, then the MAC is likely suitable for most communications where at-
tackers are not allowed an excessive number of forgery attempts. VMAC and
UMAC are flexible in their security levels. They are able to produce 64-bit tags
with forgery probabilities close to 1/260 twice as fast as versions of VMAC and
UMAC which produce 128-bit tags (which have forgery probabilities closer to
1/2100). Most other MAC schemes, including the ones used for comparison in
this paper, are not designed for such flexibility. As a result, when making speed
comparisons with VMAC’s 64-bit tags, other schemes, producing longer tags,
are unavoidable disadvantaged.

The key to speed in a Wegman-Carter MAC is the hash function used. Au-
thentication speeds are determined by the sum of the (length-dependent) time it
takes to hash the message being authenticated plus the (constant) time it takes
to cryptographically produce the tag, so this paper focuses on the hash func-
tion used in VMAC, known as VHASH. This is reasonable because any speed
improvements in the cryptographic part of a Wegman-Carter MAC could be
applied equally to all such schemes, so improvements relative to other Wegman-
Carter MACs will come almost entirely from improvements in hashing.

Notable recent examples of fast hash functions suitable for Wegman-Carter
message authentication (and peak speeds reported for Intel Pentium 4 processors
by their authors) are hash127 (around 4.4 cpb), hash1305 (3.4 cpb), Badger (2.2
cpb) and UMAC (1.0 cpb). The speeds of all of these favorably compare with
popular non-Wegman-Carter MACs such as HMAC-SHA1 and CBC-AES-MAC,
both of which require more than 10 cpb.

Universal hashing. The hash function used in a Wegman-Carter MAC must
be chosen from a universal hash function family. A hash-function family H is a
collection of hash functions, each h ∈ H having domain A and finite codomain B.
A hash-function family H is ε-almost universal (ε-AU) if the probability is no
more than ε that any two distinct inputs m,m′ hash to the same output when
hashed by a randomly selected member of H. A small value for ε indicates that

an adversary is unlikely to be able to choose a pair of inputs that hash to the
same output, as long as the hash function is chosen randomly. A stronger notion
bounds an adversary’s ability to guess differences between hash outputs. A hash-
function family H is ε-almost delta universal (ε-A∆U) if the probability is no
more than ε that h(m) − h(m′) = d for any two distinct inputs m,m′ and any
chosen constant d when hashed by a randomly selected member h of H. There
are stronger notions of universal hashing defined by Wegman, Carter and Stinson
[7, 13, 14], but ε-A∆U is adequate for message authentication, and is achieved
by VHASH.

2 Three-Stage Hashing

VHASH uses a three-stage hashing strategy where each hash stage is made of
a discrete hash function with a particular purpose. The first stage rapidly com-
presses by a fixed ratio the message to be hashed, thus reducing the data to
be processed by later (slower) stages. The second stage hashes the newly com-
pressed message to a fixed length, and the third stage distills the security of the
second-stage output into a smaller number of bits. In this section, we investigate
appropriate primitive hash functions for each stage and develop them for 64-bit
architectures. In the next section, VHASH is assembled from the functions de-
scribed here and analyzed for the purposes of message authentication. The first
MAC to employ a three-stage strategy was UMAC [5, 11].

2.1 Stage 1 – Acceleration

The goal of the first stage is to act as an accelerant for later hash stages by
compressing, at a constant ratio, long inputs into shorter ones at very high speed.
VHASH uses the NH hash family for this purpose, breaking the VHASH input
into b-bit blocks (the final block may be shorter) and using NH to hash each into
128 bits. The hashed blocks are then concatenated into a string shorter than the
original VHASH input. When b is set at 1,024 bits (as we later recommend), the
compression is 8:1 for messages whose length is a multiple of 1,024.

NH was originally designed as a parameterized hash function [5]. Given posi-
tive integer parameters n and w and a key K of length nw bits, then NH can hash
any string M that is a multiple of 2w bits in length but not longer than nw bits.
First M and K are broken into w-bit blocks M1,M2, . . . ,Mℓ and K1,K2, . . . Kn

where ℓ = |M |/w. Then, each block is interpreted as a w-bit unsigned binary
integer m1,m2, . . . ,mℓ and k1, k2, . . . kn. Finally, the hash result is computed as

NH[n,w](K,M) =

ℓ/2∑

i=1

((m2i−1+k2i−1 mod 2w)×(m2i+k2i mod 2w)) mod 22w .

NH is a hash family, and choosing a random function from the hash family
is done by choosing a random nw-bit key K. NH is known to be (2−w)-A∆U
over messages of the same length (ie, M and M ′ are distinct, but |M | = |M ′|),

and small modifications to the original proof show that NH is (2−w)-A∆U over
messages that are any multiple of 2w bits in length (but still no longer than nw
bits). In the context of VHASH, w = 64 and nw = b is suggested 1,024.

Characteristics. The chief advantage of NH is extreme speed. Every opera-
tion is done naturally and efficiently on contemporary processors if w is chosen
appropriately. On 64-bit processors with good support for multiplying 64-bit
quantities into a 128-bit result, defining w = 64 results in very high speeds.

On a 64-bit architecture, NH performance when w = 64 is about four times
better than when w = 32. If one’s goal is a (2−64)-AU guarantee over messages
of length 128j bits, then NH[n,w] achieves this goal using j multiplications when
w = 64, but requires 4j multiplications when w = 32. To see this, consider how
one would achieve a (2−64)-AU guarantee when w = 32. Each NH hashing of the
message would require 2j multiplications and produce a hash value with a (2−32)-
AU guarantee. This would have to be done twice, under separate keys, to achieve
the (2−64)-AU goal, whereas only j 64-bit multiplications are needed to achieve
the same guarantee on a 64-bit architecture. This is borne out experimentally.
Two passes with w = 32 takes about 2 cpb while a single pass with w = 64
requires only around 0.5 cpb on the Athlon 64.

One of the design goals for VHASH is achieving a balance between perfor-
mance and internal key requirement. As can be seen in Figure 4, increasing
the NH key length in VHASH increases VHASH performance for long messages
greatly at first, but performance increases drop-off at around 128–256 bytes. We
recommend 128 bytes for the NH hash key for applications which are not ex-
tremely memory constrained. This choice harnesses most of the potential speed
gains of NH with fairly low key requirement.

2.2 Stage 2 – Fix Length

The first stage produces an output proportional in length to the original input,
which means that to achieve a fixed length, further hashing is necessary. Recent
research into various polynomial-based hash functions have yielded hash func-
tions appropriate for the task with good speed and universality guarantees [1, 3,
11, 12]. Section 3 will address domain reconciliation necessary between stage-one
outputs and stage-two inputs.

A simple and efficient method to hash a string M is to fix prime number p
and break M into fixed-length blocks M1,M2,M3, . . . ,Mℓ in such a way that
when the blocks are interpreted as unsigned integers m1,m2,m3, . . . ,mℓ, each
is less than p (for example, by making each block ⌊log

2
p⌋ bits). Then, choosing

an integer key 0 ≤ k < p defines the hash output as

hk(M) = m1k
ℓ + m2k

ℓ−1 + · · · + mℓk
1 mod p .

Two different messages M,M ′ of the same block length ℓ differ by constant d
when hashed by this function if

hk(M)−hk(M ′) = (m1−m′

1
)kℓ +(m2−m′

2
)kℓ−1+ · · ·+(mℓ−m′

ℓ)k
1 mod p = d .

Because M 6= M ′, at least one of the coefficients in this polynomial is non-zero.
This being a polynomial of degree at most ℓ, there are at most ℓ values for k
which cause hk(M)−hk(M ′)−d (mod p) to evaluate to zero. If we define a hash
family H = {hk | 0 ≤ k < p}, then H is an ε-A∆U hash family for ε = ℓ/p.

Characteristics. With care, polynomial hashing can be made to perform well.
Horner’s Rule suggests rephrasing hk(M) as ((· · · ((m1k + m2)k + m3)k · · ·)k +
mℓ)k mod p , which allows hk(M) to be computed as a sequence of ℓ multiplica-
tions and additions modulo p [10]. Those multiplications and additions modulo
p can be made efficient by choosing a convenient p and restricting the choice of
k to a convenient set.

By choosing p to be of the form p = 2a−b for some small b, reductions modulo
p can be done efficiently in a lazy manner. Each time a value c becomes at least
2a, it can be rewritten as the (modulo p) equivalent c − 2a + b. For example
p = 261−1 is prime. This means that, in a 64-bit register, a value c greater than
p but less than 264 can be reduced by computing c = (c div 261)+ (c mod 261).
This equality simply recognizes that c = x261+y for some x and 0 ≤ y < 261, and
replaces 261 with the equivalent (modulo p) value 1. The div and mod operations
extract x and y, and can be computed efficiently using bitwise operations. This
process is “lazy” for two reasons. First, numbers can be allowed to get as large
as desired before performing a reduction as long as values do not exceed the
register’s capacity. Second, a reduction to the range 0, . . . , p− 1 is not necessary
until a final result is needed. So, when this method is followed to perform an
intermediate reduction, the result need not be in the range 0, . . . , p−1. This puts
off expensive range checks until the very end of the polynomial hash. Particularly
useful primes on a 64-bit architecture are 2127 − 1 and 261 − 1.

Another source of inefficiencies is register carries during addition. Whenever
a number is too large to be represented in a single CPU register, the number
is generally split into multiple registers, and arithmetic on the larger number is
accomplished by some sequence of smaller operations. For example, if we rewrite
128-bit values j and k as j = w264 + x and k = y264 + z where 0 ≤ x, z < 264,
then jk = wy2128 + (wz + xy)264 + xz. This means that to compute jk, we can
put the top 64-bits of j and k into 64-bit registers w and y, and their low 64-
bits into x and z. The result jk is then assembled by appropriately multiplying,
shifting and adding wy, wz, xy and xz.

Consider the case where a polynomial is being evaluated modulo prime p =
2127−1 using Horner’s Rule with lazy modulo reduction whenever an intermedi-
ate value exceeds 128-bits. Each step in the Horner’s Rule evaluation is a multi-
plication and addition of the form jk+m mod p, with k,m < p and j < 2128. As
just seen, say that j and k are 128-values spread into registers w, x, y and z so
that jk = wy2128+(wz+xy)264+xz (mod p). Because 2128 = 2 (mod p), this can
be rewritten jk = ((wz +xy) mod 264)264 +(2(((wz +xy) div 264)+wy)+xz)
(mod p). If j and k are unrestricted, then every addition could result in a carry
beyond 128-bits. These carries must be accumulated and dealt with, which could
be inefficient. Ideally this computation of jk would involve no carries beyond
128-bits, allowing a more efficient computation.

Eliminating carries can be done by restricting k. The polynomial hash de-
scribed in this section is (ℓ/p)-A∆U when hashing ℓ-block messages and choosing
k from 0, . . . , p − 1. This is due to the fact that there are at most ℓ values in
the range 0, . . . , p − 1 that cause hk(M) − hk(M ′) − d (mod p) to evaluate to
zero. If k is chosen from some subset A ⊆ {0, . . . , p − 1} instead, there would
still be at most ℓ values that cause hk(M) − hk(M ′) − d (mod p) to evaluate
to zero, but because |A| ≤ p, the probability of randomly choosing one of them
increases to at most ℓ/|A|. This means A can be chosen judiciously to exclude
keys which cause excessive carries. In the case of evaluating polynomials modulo
p = 2127−1, restricting k to elements of A = {y264+z | 0 ≤ y < 262, 0 ≤ z < 263}
eliminates all but one possible carry beyond 128-bits when computing jk on a
64-bit architecture for any 0 ≤ j < 2128.

Experimentally, we have found that long sequences of cache-resident message
blocks, each already less than 2127 − 1, can be hashed at a rate of 1.7 cpb on
the Athlon 64 when k is chosen as described to avoid excessive carries. When
hashing sequences of values less than 261 −1 over modulus 261 −1, allowing k to
be any value less than 261 − 1, messages can be hashed at 1.3 cpb on the Athlon
64. It should be noted that hashing an arbitrary string would not be nearly as
fast due to the need of breaking the string into appropriate blocks (within the
modulus).

2.3 Stage 3 – Distillation

When NH is defined for w = 64 and the Polynomial hash is defined over prime
modulus p = 2127 − 1, as is the case in VHASH, the resulting universality
guarantee of the first two stages composed can be no better than (2−64)-A∆U
(more on this in Section 3) and yet the output requires 127 bits. To reduce
the disparity between the number of bits needed for the hash output and the
universality guarantee, one final hash is used to hash the fixed length stage-two
output into fewer bits.

Another well known provably universal hashing function is the inner product
over a prime modulus [8]. Again, let p be a prime and let M be broken into
fixed-length blocks M1,M2,M3, . . . ,Mℓ in such a way that when the blocks are
interpreted as unsigned integers m1,m2,m3, . . . ,mℓ, each is less than p. Then,
choosing a vector k = (k1, k2, . . . , kℓ) with 0 ≤ ki < p for all 1 ≤ i ≤ ℓ defines
the hash output as

hk(M) = m1k1 + m2k3 + · · ·mℓkℓ mod p .

For any two different messages M,M ′ of the same block length ℓ and integer
0 ≤ d < p, when k is chosen at random, the probability that

hk(M)− hk(M ′) = (m1 −m′

1
)k1 + (m2 −m′

2
)k2 + · · ·+ (mℓ −m′

ℓ)kℓ mod p = d

is exactly 1/p. It follows that inner product hashing over a prime modulus forms
an ε-A∆U hash family for ε = 1/p.

VHASH[b](M, K, k, k1, k2)
Inputs:

M , a string of any length
K, a string of length b bits, where b = 128i for some integer i > 1
k, an element of {w296 + x264 + y232 + z | w, x, y, z ∈ Z230}
k1, k2, integers in the range 0 . . . 261 − 2, inclusive

Output:
h, an integer in the range 0 . . . 261 − 2, inclusive

Algorithm:
1. n = max(⌈|M |/b⌉, 1)
2. Let M1, M2, . . . , Mn be strings so that M1||M2|| · · · ||Mn = M and

|Mi| = b for 1 ≤ i < n.
3. ℓi = |Mi| for each 1 ≤ i ≤ n
4. Let Mn = Mn||0

j where j ≥ 0 is the smallest integer so
that |Mn| + j mod 128 = 0

5. Byte-reverse each 64-bit word in Mi for each 1 ≤ i ≤ n
6. ai = (NH[b/64, 64](K, Mi) mod 2126) + (ℓi mod b)264 for each 1 ≤ i ≤ n
7. p = kn+1 + a1k

n + a2k
n−1 + · · · + ank1 mod (2127 − 1)

8. p1 = (p div 264) mod 260

9. p2 = p mod 260

10. h = p1k1 + p2k2 mod (261 − 1)

Fig. 2. The hash family VHASH is ε-A∆U , when K, k, k1, k2 are chosen randomly
from their domains, where ε = 2−59.9 + (ℓ/b)2−107.

Characteristics. Inner-product hashing requires at least as much key as mes-
sage being hashed. This makes it unsuitable for long messages. But, for short
messages, implementations can be efficient using strategies already discussed for
polynomial hashing. In particular, lazy modular reduction and choosing a prime
modulus of the form p = 2a − b where b is small, results in good performance.
For example, when p = 261 − 1, j < 264 and k < p, the product jk (mod p)
can be efficiently computed as (jk div 264)23 + (jk mod 264) because 264 = 23

(mod p). This is exactly the computation done by VHASH in its third stage.

3 VHASH Definition

With these component hash functions as building blocks and the three-stage
hash function as a model, a hash function suitable for authenticating arbitrary
messages and optimized for 64-bit architectures can be presented. For any b
which is a positive multiple of 128, Figure 2 specifies the hash family VHASH[b]
where choosing a random function h from the family is achieved by choosing
K, k, k1 and k2 uniformly at random from their domains and letting h(·) =
VHASH(·,K, k, k1, k2).

Theorem 1. Let b be any positive multiple of 128 and let ℓ be any positive
integer, then VHASH[b] is ε-A∆U over all binary strings up to length ℓ bits
where ε = 2−59.9 + (ℓ/b)2−107.

The theorem will be proven over a sequence of lemmas later in this section. With
this result, VHASH can easily be embedded in a Wegman-Carter MAC which
we call VMAC. Here we summarize its construction. (It will be fully specified
in a separate document.) Let p = 261 − 1 and N be some nonce space. Then
for functions f : N → Zp and h ∈ VHASH[b], tag generation under VMAC
is defined as VMACTagGenf,h(m,n) = h(m) + f(n) mod p for message m and
nonce n. We define the security of a nonce-based MAC scheme, such as VMAC,
that uses tag-generation function TagGen(m,n) as follows. Assume an adversary
knows any sequence of triples (m1, n1, t1) . . . (mq, nq, tq) where each ni is unique
and ti = TagGen(mi, ni) for each 1 ≤ i ≤ q. The MAC scheme is α-secure
if the adversary cannot produce (m,n, t) with probability exceeding α where
(m,n) 6= (mi, ni) for any i and t = TagGen(m,n). The following theorem follows
from the theory of Wegman-Carter MACs.

Proposition 2. Let ℓ be a positive integer, p = 261 − 1 and N be some non-
empty set. Let b be a positive multiple of 128. Let VMACTagGenf,h(m,n) =
h(m) + f(n) mod p for randomly chosen functions f : N → Zp and h ∈
VHASH[b]. Then, VMACTagGenf,h is a (2−59.9 + (ℓ/b)2−107)-secure over mes-
sages upto ℓ bits in length.

3.1 VHASH Analysis

The hash functions seen so far have interfaces that are incompatible with one an-
other without some adaptation. For example, NH produces outputs with values
up to 2128−1, whereas the polynomial hash only accepts sequences of values less
than 2127−1. Similarly, the polynomial hash produces a value less than 2127−1,
but the inner-product expects a sequence of values less than 261 − 1. To address
these problems, a lemma is introduced which allows out-of-range values to be
brought into range with a manageable increase to the probabilities involved.
Length issues must also be resolved. As presented, each hash function seen so
far has a universality guarantee when hashing messages of equal length. These
must be extended to provide universality guarantees over all lengths. Each stage
of VHASH will now be analyzed for universality guarantee and interface.

3.2 First: A Lemma

The primary tool used to fix the problem that one hash function produces values
that are outside of the domain of a second hash function is the following lemma
which says that if we routinely zero any fixed bit-position of the outputs of an ε-
A∆U hash function, the resulting hash function is still A∆U but with a reduced
universality guarantee.

VHASH-128[b](M, K1, K2, k)
Inputs:

M , a string of any length
K1, K2, strings of length b bits, where b = 128i for some integer i > 1
k, an element of {w296 + x264 + y232 + z | w, x, y, z ∈ Z230}

Output:
h, an integer in the range 0 . . . 2127 − 2, inclusive

Algorithm:
1. n = max(⌈|M |/b⌉, 1)
2. Let M1, M2, . . . , Mn be strings so that M1||M2|| · · · ||Mn = M and

|Mi| = b for 1 ≤ i < n.
3. ℓi = |Mi| for each 1 ≤ i ≤ n
4. Let Mn = Mn||0

j where j ≥ 0 is the smallest integer so
that |Mn| + j mod 128 = 0

5. Byte-reverse each 64-bit word in Mi for each 1 ≤ i ≤ n
6. ai = (NH[b/64, 64](K1, Mi) mod 2126) + (ℓi mod b)264 for each 1 ≤ i ≤ n
7. bi = NH[b/64, 64](K2, Mi) mod 2126 for each 1 ≤ i ≤ n
8. h = k2n+1 + a1k

2n + b1k
2n−1 + a2k

2n−2 + b2k
2n−3 + · · ·

+ank2 + bnk1 mod (2127 − 1)

Fig. 3. The hash family VHASH-128 is ε-A∆U , when K1, K2, k1, k2 are chosen ran-
domly from their domains, where ε = (ℓ/b)2−118.

Definitions. When x is a non-negative integer, let xi be 1 if the binary repre-
sentation of x has a 1 in the position of weight 2i and 0 otherwise. Let Zeroi(x)
be the function that returns x if xi = 0 and returns x−2i if xi = 1 (ie, it returns
x with the 2i position zeroed). Zn is the set {0, 1, 2, . . . , n − 1}. When s is a
string, |s| is its bitlength.

Lemma 3. Let H = {h : A → Zn} be an ε-A∆U hash family (where the
operation is addition modulo n) and Hi = {Zeroi ◦ h |h ∈ H}, then Hi is (3ε)-
A∆U for every i.

Proof. Let a 6= b be elements of A, and d and d′ be elements of Zn. Because H
is ε-A∆U , we know that Pr[h(a) − h(b) = d] ≤ ε when h is chosen randomly
from H, but what is the probability Pr[h′(a) − h′(b) = d′] when h′ is chosen
randomly from Hi? Let h be chosen randomly, and let h′ = Zeroi ◦ h for some
0 ≤ i < lg n. Define x = h(a) and y = h(b). There are four possible combinations
for the values of xi and yi: (xi, yi) could equal (0, 0), (0, 1), (1, 0) or (1, 1). We
look at each case.

When xi = yi, then h′(a) − h′(b) = d′ if and only if h(a) − h(b) = d′.
Using conditional probability we can bound the likelihood of this scenario as
Pr[h(a)−h(b) = d′ and xi = yi] = Pr[h(a)−h(b) = d′] ·Pr[xi = yi |h(a)−h(b) =
d′] ≤ ε ·1. Similarly, if (xi, yi) is (0, 1) or (1, 0) then h′(a)−h′(b) = d′ if and only

if h(a)−h(b) is d′ +2i or d′−2i, respectively, each of which is similarly bounded
by ε · 1. These three cases being the only ones in which h′(a) − h′(b) = d′, H ′

must be 3ε-A∆U . ⊓⊔

Note that a similar result is not possible for ε-AU hash families. Zeroing a bit of
an ε-AU hash family can eliminate all guarantees. The identity function fI(x) =
x is 0-AU, but if you zero the last bit of the output (ie, define h = Zero0 ◦ fI),
then h(s||0) and h(s||1) always collide for every s.

3.3 Stage 1 – NH

The goal of the first hashing phase (Lines 1–6 of Figure 2) is to hash arbitrary
messages into much shorter representations (albeit proportional in length to their
originals) in such a way that two distinct arbitrary-length messages have a low
probability of hashing to the same result (so that inputs to the next hash phase
are unlikely to be the same). Letting b be any positive multiple of 128, Lines 1–6
of Figure 2 defines a hash family utilizing NH. The domain of the hash family
is binary strings of any length. The codomain is vectors of integers from Z2126 .
Randomly choosing a function from the hash family is achieved by choosing a
random b-bit string K. Lines 1–6 work as follows. Given string M , break M
into n = ⌈|M |/b⌉ blocks M1,M2, . . . ,Mn so that each of the first n− 1 blocks is
length b and Mn is whatever is left over (Lines 1–2). If M was the empty string,
then n is set to 1. Each of the blocks M1, . . . ,Mn−1 is guaranteed to be in the
domain of NH. Block Mn may not be a multiple of 128, and so not in the domain
of NH which is only defined for inputs with length divisible by 2w. Appending
the fewest number of zero bits needed to make it so will bring Mn into the
domain of NH (Line 4). The blocks are then each hashed independently by NH,
the two most significant bits of the results are zeroed (Line 6), and the result has
the modulo-b pre-zero-padding length of its corresponding block added. Finally,.
The n resulting values form a vector which is the hash function’s output.

Lemma 4. Let b be any positive multiple of 128. Lines 1–6 of Figure 2 define
a (9/264)-AU hash family over binary strings of arbitrary length.

Proof. Let b be a positive multiple of 128, K be a uniformly distributed b-
bit string, and M 6= M ′ arbitrary binary strings. Let M = M1, . . . ,Mm and
M ′ = M ′

1
, . . . ,M ′

n be broken into blocks and let ℓi and ℓ′i represent the length
of Mi and M ′

i as described in Lines 1–3 of Figure 2. Let Mm and M ′

n be zero
extended to the nearest multiple of 128 bits, if needed, as described in Line
4. The byte-reversal of Line 5 has no effect on whether Mi = M ′

i for any i.
What is the probability that identical vectors are produced by evaluating Line
6 on M1, . . . ,Mm and M ′

1
, . . . ,M ′

n? If n 6= m, the probability of collision is zero
because the vectors produced will be different lengths. There are two other cases
to examine.

If n = m and Mi 6= M ′

i for some 1 ≤ i ≤ n, then, because NH is 2−64-A∆U
over strings that are a multiple of 2w = 128 bits in length (which both Mi

and M ′

i are guaranteed to be), the probability that (NH(K,Mm) mod 2126) −

(NH(K,M ′

n) mod 2126) = 0 is no more than 9/264. The factor of nine comes
from the mod 2126, which has the affect of zeroing the top two bits of the NH
output. Lemma 3 says that this causes up to a factor of nine degradation.

There is one more situation to consider: when one string is a proper prefix
of the other before zero-padding, but the two strings are identical afterward.
In this case, Mm = M ′

n because the strings are the same after padding but
ℓm 6= ℓ′n because one string was a proper prefix of the other before padding.
There is thus zero probability that (NH(K,Mm) mod 2126)+ (ℓm mod b)264 =
(NH(K,M ′

n) mod 2126)+(ℓ′n mod b)264 because the NH hashes are guaranteed
to give the same result, but two different lengths are added.

In every case, the probability that the vectors output are identical when
hashing M and M ′ under key K and parameter b is no more than 9/264. ⊓⊔

3.4 Stage 2 – Polynomial

The goal of the second hashing phase (Lines 7–9 in Figure 2) is to take the
unbounded-length output of the first NH hash phase and hash it to a short
fixed-length string in such a way that if two inputs to this stage differ then the
probability that the outputs collide is low. Lines 7–9 define a universal hash
family. The domain of the hash family is vectors of integers from Z2127

−1. The
codomain is ordered pairs from Z260 × Z260 . Choosing a random function from
the hash family is done by choosing a random element k ∈ {w296 +x264 +y232 +
z | w, x, y, z ∈ Z230}. Line 7 is a simple polynomial evaluation hash modulo
2127 − 1. Lines 8–9 utilize Lemma 3 by zeroing seven bits and then breaking in
two the result to produce an output in the domain of the third hash phase. Since
the first NH phase outputs sequences of values less than 2126, those outputs are
suitable without modification for hashing by the polynomial hash.

Lemma 5. Let n ≥ 0 be an integer. Lines 7–9 of Figure 2 define a (n/2107)-AU
hash family over vectors of length up to n of values less than 2127 − 1.

Proof. It is known that the polynomial hash of Section 2 is universal over vectors
of the same length. So, to allow vectors of varying length, let n be an integer
no less than the length of the longest vector to be hashed. Then, to hash vec-
tor m1,m2, . . . ,mj with the polynomial hash of Section 2, first prepend n − j
zeros and a one to the vector, resulting in a vector 0, 0, . . . , 0, 1,m1, . . . ,mj of
length n + 1 elements. This preprocessing assures that all vectors hashed by the
polynomial are the same length, and it assures that any pair of vectors that are
different before preprocessing are also different after preprocessing. This prepro-
cessing step extends the basic polynomial hash of Section 2 to vectors up to
length n, but maintains a ((n + 1)/2120)-A∆U guarantee when key k is chosen
from {w296 + x264 + y232 + z | w, x, y, z ∈ Z230}. Notice that Line 7 of Figure
2 produces the same result as would the preprocessed polynomial hash just de-
scribed. This is because the prepended zeros have no computational effect but
are used only as a conceptual device to make all vectors equal length. Thus the
hash on Line 7 is also ((n + 1)/2120)-A∆U. Lemma 3 tells us that zeroing seven

bits as in Lines 8–9, degrades the universality guarantee by up to a factor of 37.
To simplify the guarantee, (37(n + 1))/2120 < n/2107. ⊓⊔

3.5 Stage 3 – Inner-Product

Line 10 of Figure 2 is a straightforward application of the inner-product hash
from Section 2. It is a hash family with domain Z261

−1 × Z261
−1 and codomain

Z261
−1. Choosing a random function from the hash family is done by choosing a

random (k1, k2) ∈ Z261
−1 × Z261

−1. The output from the second hashing phase
is a pair of values less than 260, so no adjustment is needed. The following
proposition needs no further proof.

Proposition 6. Line 10 of Figure 2 defines a (1/(261 − 1))-A∆U hash family
over Z261

−1 × Z261
−1.

Putting it Together. Lines 1–10 of Figure 2 define VHASH as the composi-
tion of three universal hash functions. The properties of composed hash functions
are well known [4, 13]. If H1 is an ε1-AU family of hash functions with codomain
A, and H2 is an ε2-AU family of hash functions with domain B where A ⊆ B,
then H = {h2 ◦ h1 |h1 ∈ H1, h2 ∈ H2} is (ε1 + ε2)-AU. If H2 is ε2-A∆U, then
H is (ε1 + ε2)-A∆U. This leads immediately to the result of Theorem 1.

If an application needs collision probabilities less than those of VHASH, then
VHASH could be applied to given messages twice, using a different key each
time. Alternatively, Figure 3 gives a hash function VHASH-128 based on the
same principles as VHASH, but producing 128-bit outputs without the need for
significantly more internal key than VHASH. Although no proof of correctness
is given here, the arguments mirror those of VHASH. VHASH-128 is (ℓ/b)2−118-
A∆U.

3.6 VHASH Performance

The performance of VHASH is influenced by many factors, the most important
being how efficiently the host architecture multiplies 64-bit and adds 128-bit
quantities. The Athlon 64 and recently released Intel Core 2 architectures — both
64-bit and designed for high “performance-per-watt” — are very efficient in these
operations and so perform at the level described in this paper. Architectures
which do not support fast 64-bit multiplication and multi-precision addition do
not execute VHASH as quickly. Consider multiplication of 64-bit operands into
a 128-bit result. On the Athlon 64 this can be done using a single instruction
with a latency of five cycles, and VHASH hashes at a peak of 0.5 cpb. Intel’s
64-bit NetBurst architecture (eg, “Nacona”) can also perform the multiplication
in a single instruction, but has a latency of 12 cycles, resulting in a VHASH
peak of 1.4 cpb. The PowerPC 970 requires two instructions to complete a 64-
bit multiplication, with a total latency of 13 cycles, and VHASH peaks at 1.0
cpb. The PowerPC version is faster than the NetBurst version due to NetBurst’s
horrible multiprecision addition latencies which also impact performance, but to
a lesser extent than multiplication.

 0.25

 0.5

 1

 2

 4
 32 64 128 256 512 1024 2048

S
pe

ed
 (

cy
cl

es
/b

yt
e)

Message Length (bytes)

1024 Bytes
512 Bytes
256 Bytes
128 Bytes
64 Bytes
32 Bytes
16 Bytes

Fig. 4. Performance measured in Athlon 64 cycles per byte of message hashed for
various NH key lengths and message lengths. Gains diminish greatly beyond 128 bytes.

VHASH slows down significantly on 32-bit architectures. Computing a 64-bit
multiplication on a 32-bit architecture using the primary-school multiprecision
multiplication algorithm requires four 32-bit multiplications and several multi-
precision additions to produce a 128-bit result. On the Motorola PowerPC 7450,
which has a six cycle latency per 32-bit multiplication, VHASH peaks at 5.0
cpb. On a 32-bit Intel NetBurst architecture, 32-bit multiplication latency is 11
cycles, but use of SSE vector instructions allows for a peak speed of 6.4 cpb.
Clearly, VHASH benefits from architectures which multiply 64-bit registers fast,
enabling exceptional VHASH performance.

Other hash functions are somewhat less variable across the mentioned archi-
tectures. UHASH and SHA1 were designed for 32-bit architectures, and so mov-
ing from 64-bit to 32-bit architectures has no inherent disadvantage. Poly1305 is
multiplication based, but uses a processor’s floating point unit and so is less af-
fected by changes to general purpose register width. For all three hash functions,
it is the efficiency of the processor implementation which will have the greatest
impact. For example, Poly1305 has peak performance on a 64-bit PowerPC 970
of 6.6 cpb and 7.3 cpb on a slightly less efficient 32-bit PowerPC 7410. On the
64-bit Athlon 64 Poly1305 peaks at 3.1 cpb while it peaks on the much less
efficient 32-bit Intel NetBurst at 5.2 cpb.

Other factors having significant affect on VHASH performance are the size
of the message being hashed and the length b of the key used in the first (NH)
stage of hashing. Figure 4 shows how these parameters affect performance on the
Athlon 64 as measured in cycles per byte. Hashing overhead is amortized over

all bytes being hashed, so as message lengths increase, overhead contributes less.
Also, increasing the length of the Stage 1 NH key reduces the amount of data
hashed by Stages 2 and 3. Since Stage 1 is much faster than the later stages,
increasing the NH key length improves performance on longer messages.

Acknowledgements

The author wishes to thank the anonymous reviewers of SAC 2006 and FSE 2006
for their helpful reviews, especially in urging a closer look at performance on 32-
bit architectures. Also, Phil Rogaway’s comments and Joe Olivas’s assitance in
gathering timing data were timely and quite helpful. Thanks!

References

1. Afanassiev V, Gehrmann C, Smeets B. Fast message authentication using efficient
polynomial evaluation. In Fast Software Encryption – FSE 1997. Springer-Verlag,
1997; 190–204.

2. Bernstein D. Stronger security bounds for Wegman-Carter-Shoup authenticators.
In Advances in Cryptology – EUROCRYPT 2005. Springer-Verlag, 2005; 164–180.

3. Bernstein D. The Poly1305-AES message-authentication code. In Fast Software

Encryption – FSE 2005. Springer-Verlag, 2005; 32–49.
4. Bierbrauer J, Johansson T, Kabatianskii G, Smeets B. On families of hash functions

via geometric codes and concatenation. In Advances in Cryptology – CRYPTO

1993. Springer-Verlag, 1993; 331–342.
5. Black J, Halevi S, Krawczyk H, Krovetz T, Rogaway P. UMAC: Fast and secure

message authentication. In Advances in Cryptology – CRYPTO 1999. Springer-
Verlag, 1999; 216–233.

6. Boesgaard M, Christensen T, Zenner E. Badger – A fast and provably secure MAC.
In Applied Cryptography and Network Security – ACNS 2005. Springer-Verlag,
2005; 176–191.

7. Carter L, Wegman M. Universal classes of hash functions. J. of Computer and

System Sciences 1981; 22:265–279.
8. Cormen T, Leiserson C, Rivest R, Stein C. Introduction to algorithms. MIT Press,

2001. Section 11.3.3.
9. Halevi S, Krawczyk H. MMH: Software message authentication in the Gbit/second

rates. In Fast Software Encryption – FSE 1997. Springer-Verlag, 1997; 172–189.
10. Knuth D. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,

3rd ed. Addison-Wesley, 1998; 486–489.
11. Krovetz T, Rogaway P. Fast universal hashing with small keys and no prepro-

cessing: The PolyR construction. In Information Security and Cryptology – ICICS

2000. Springer-Verlag, 2000; 73–89.
12. Shoup V. On fast and provably secure message authentication based on universal

hashing. In Advances in Cryptology – CRYPTO 1996. Springer-Verlag, 1996; 313-
328.

13. Stinson D. Universal hashing and authentication codes. Designs, Codes and Cryp-

tography 1994; 4:369–380.
14. Wegman M, Carter L. New hash functions and their use in authentication and set

equality. J. of Computer and System Sciences 1979; 18:143–154.

