Regular Expressions

— A regular expression (RE) represents a set of strings.
— All the strings share a pattern specified by the RE.
— Think of a (RE) as a way to express a pattern.

Example:

ab(ab)∗(a+b) is "ab followed by any number of ab's followed by a or b".
Patterns: concatenation

When thinking of patterns concatenation means sequence.

RE: abc matches a followed by b followed by c

RE: $R_1 R_2$ matches R_1 string followed by R_2 string

Examples:
(a*)(b*) = a*b* = (any a's) followed by (any b's)
(hat)+(hot) = hat+hot matches "hat" or "hot"
Patterns: +

When thinking of patterns + means "or"

RE: \(a+b\) matches "a" or "b"

RE: \(R_1 + R_2\) matches string from \(R_1\) or string from \(R_2\)

Examples:
\((a^*)+(b^*) = a^*+b^*\) matches string of all a's or all b's

\(h(a+o)t\) matches "hat" or "hot" (parens required here)
Patterns: *

When thinking of patterns * means "any number of"

RE: a* matches any number of a's (incl 0)

RE: \(R^* \) matches any sequence of strings from \(R \)

Examples:
(\(ab \))^* matches \(ab \) repeated any number of times
\(\lambda, ab, abab, ababab, ... \)
(\(ab^* \))^* matches \(ab^* \) repeated any number of times
\(\lambda, a, ab, abb, abb|ab, a|ab|ab|ab, a|a|a|a|a|a, ... \)
Common Patterns: \((a+b)^*\)

\((a+b)^* = \text{every possible string over } \{a, b\}\)

\(a(a+b)^* = \text{is every possible string starting with a}\)

Can be used with bigger building blocks...

\(((a+b)(a+b))^* \text{ matches } (a \text{ or } b)(a \text{ or } b) \text{ any number.}\)

\(\lambda, \text{ aa, ba, ab|ab, aa|bb|aa, ...}\)

All the strings of length a multiple of 2
Common Patterns: $R + \lambda$

To say something is optional use or with empty string.

$R + \lambda$ matches string from R or an empty string.

Example:
$(s+\lambda)pot$ matches "s" or empty followed by "pot"
spot, pot
Common Patterns: R1 + R2

Break big problem into smaller ones.

If $L = A \cup B$ then make REs for A and B instead.

Strings beginning and ending with same character \{a,b\} (beginning/ending a) \cup (beginning/ending b)

(a (a+b)* a) + (b (a+b)* b)

Use + to add missing elements

(a (a+b)* a) + (b (a+b)* b) + a + b
Design method

1. Think in patterns
 \[(\text{any char})(\text{any string})(\text{same char})\]
 \[a(\text{any string})a + b(\text{any string})b\]
 \[a(a+b)*a + b(a+b)*b\]

2. Try to "break" your RE
 \[\text{Find a string it produces that it shouldn't}\]
 \[\text{Find a string it doesn't produce that it should}\]
 \[\text{This is how I grade quizzes}\]
Example: \(\{w \in \{0, 1\}^{*} \mid w \text{ has exactly one } 1\} \)

Pattern: (any number of 0) 1 (any number of 0)

RE: \(0^{*} 1 0^{*}\)

What does it generate?
\(\{0\}^{*} \{1\} \{0\}^{*}\)
\(\{\lambda, 0, 00, 000, \ldots\} \{1\} \{\lambda, 0, 00, 000, \ldots\}\)
\(\{1, 01, 10, 001, 010, 100, 0001, 0010, 0100, 1000, \ldots\}\)

Fits description!
Example: $\{w \in \{0, 1\}^* \mid w \text{ has at least one } 1\}$

Pattern: (any string) 1 (any string)

RE: $(0+1)^* \ 1 \ (0+1)^*$

What does it generate?

$\{0,1\}^* \{1\} \{0,1\}^*$

$\{\lambda, 0, 1, 00, 01, 10, 11, \ldots\} \{1\} \{\lambda, 0, 1, 00, 01, 10, 11, \ldots\}$

$\{1, 01, 10, 11, 001, 010, 011, 100, 101, 111, \ldots\}$

Useful to think in length order.

Write all length 1, then length 2, then length 3, ...
Example: \(\{ w \in \{0, 1\}^* \mid w \text{ has even length} \} \)

Even definition: \(n \text{ even iff } n = 2k \) for some integer \(k \).

Pattern: (2 characters) any number of times

RE: \((00+01+10+11)^* = ((0+1)(0+1))^*\)
Example: \(\{w \in \{0, 1\}^* \mid w \text{ is not length 3}\} \)

It's harder to express what's missing in a pattern.

Break into subproblems.

Pattern:
\[(\text{len 0}) + (\text{len 1}) + (\text{len 2}) + (\text{len 4}) + (\text{len 5}) + \ldots \]
\[(\text{len 0}) + (\text{len 1}) + (\text{len 2}) + (\text{len } \geq 4)\]

RE:
\[\lambda + (0+1) + (0+1)(0+1) + (0+1)(0+1)(0+1)(0+1)(0+1)(0+1)\ast\]