Pumping Lemma for Regular Languages
CSC 135 – Computer Theory and Programming Languages

The primary tool for showing that a language is not a regular language is by using the pumping lemma. The following facts will be useful in understanding why the pumping lemma is true.

- If a language L is regular there is a DFA M that recognizes it.
- M must have some finite number of states, let’s call it p.
- While M consumes p characters, it follows p arrows, visiting $p + 1$ states (including the start state).
- In this case, the pigeonhole principle says M must visit some state more than once.
- If M consumes input string s and the length of s is at least p (ie, $|s| \geq p$), then s can be broken into three substring parts $s = xyz$ where (i) x takes M to the first state that gets repeated, (ii) y continues until that state gets repeated for the first time, and (iii) z is the rest of string s.
- y cannot be empty (because it causes a second visit to the first repeated state), and $|xy| \leq p$ (because the first repeat happens by then).
- If xyz leads to an accept state, then so does xz, $xyyz$, $xyyyz$, etc. This is because x leads to the first repeated state, y loops back to that same state, and z goes from that state to an accept state. Repeating the loop any number of times still allows z to continue to the accept state.

These facts explain why the following theorem is true.

Theorem (pumping lemma): If L is a regular language, then there is a positive integer p such that any string s that is in L and at least p characters long, can be broken into three substrings $s = xyz$ satisfying the following.

1. $xy^iz \in L$ for every $i \geq 0$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Note: If you know s is in L and at least p long, you don’t get to pick xyz. You only get to claim they exist.

Proving a language is not regular

The main use of the pumping lemma is to prove that a language is not regular and therefore cannot be recognized by any DFA or NFA, and cannot be generated by any regular expression. Proofs of this type often follow this pattern:

Theorem: L is not regular.

Proof sketch:
For purposes of contradiction assume L is regular. Because L is regular there must be a pumping length p.

Consider the string **** which is in L.

The pumping lemma says there exists $xyz = ****$ where $|xy| \leq p$, $|y| > 0$, and xy^iz is in L for all $i \geq 0$. (argue that xz or $xyyz$ is not a string in L)

This contradicts that the pumping lemma says (xz or $xyyz$) is in L.

Example

Theorem: $L = \{0^n1^n | n \geq 0 \}$ is not regular.

Proof: For purposes of contradiction assume L is regular. Because L is regular there must be a pumping length p. Consider the string 0^p1^p which is in L. The pumping lemma says there exists $xyz = 0^p1^p$ where $|xy| \leq p$, $|y| > 0$, and xy^iz is in L for all $i \geq 0$. Because 0^p1^p begins with p 0s, x and y must be all 0s. Since $|y| > 0$, xz will have fewer 0s than 1s and so cannot be in L. This contradicts that the pumping lemma says xz is in L.